The Degree of Segmental Aneuploidy Measured by Total Copy Number Abnormalities Predicts Survival and Recurrence in Superficial Gastroesophageal Adenocarcinoma
نویسندگان
چکیده
BACKGROUND Prognostic biomarkers are needed for superficial gastroesophageal adenocarcinoma (EAC) to predict clinical outcomes and select therapy. Although recurrent mutations have been characterized in EAC, little is known about their clinical and prognostic significance. Aneuploidy is predictive of clinical outcome in many malignancies but has not been evaluated in superficial EAC. METHODS We quantified copy number changes in 41 superficial EAC using Affymetrix SNP 6.0 arrays. We identified recurrent chromosomal gains and losses and calculated the total copy number abnormality (CNA) count for each tumor as a measure of aneuploidy. We correlated CNA count with overall survival and time to first recurrence in univariate and multivariate analyses. RESULTS Recurrent segmental gains and losses involved multiple genes, including: HER2, EGFR, MET, CDK6, KRAS (recurrent gains); and FHIT, WWOX, CDKN2A/B, SMAD4, RUNX1 (recurrent losses). There was a 40-fold variation in CNA count across all cases. Tumors with the lowest and highest quartile CNA count had significantly better overall survival (p = 0.032) and time to first recurrence (p = 0.010) compared to those with intermediate CNA counts. These associations persisted when controlling for other prognostic variables. SIGNIFICANCE SNP arrays facilitate the assessment of recurrent chromosomal gain and loss and allow high resolution, quantitative assessment of segmental aneuploidy (total CNA count). The non-monotonic association of segmental aneuploidy with survival has been described in other tumors. The degree of aneuploidy is a promising prognostic biomarker in a potentially curable form of EAC.
منابع مشابه
Genomic Responses to Abnormal Gene Dosage: The X Chromosome Improved on a Common Strategy
Mechanisms to guard genomic integrity are critical to ensuring the welfare and survival of an organism. Disruptions of genomic integrity can result in aneuploidy, a large-scale genomic imbalance caused by either extra or missing whole chromosomes (chromosomal aneuploidy) or chromosome segments (segmental aneuploidy). A change in dosage of a single gene may not compromise the well-being of an or...
متن کاملI-35: Genetic Aberrations in Early Development:The Origins and The Fates
Genetic aberrations are commonly seen in human preimplantation embryos. Non-disjunction and premature division of a chromosome are common in both meiosis and mitosis divisions. The expected result for meiotic aneuploidies is full aneuploidy in the later stages whereas mosaicism is the most frequent event in the cleavage and blastocyst stages. The main causes for mosaicism are post-zygotic event...
متن کاملI-37: Genome Instability and DNA Damage in Male Somatic and Germ Cells Expressed as Chromosomal Microdeletion and Aneuploidy Is A Major Cause of Male Infertility
Background: Sperm chromatin insufficiencies leading to low sperm count and quality, infertility and transmission of chromosomal microdeletion and aneuploidies to next generations can be due to exposure to environmental pollutions, chemicals and natural or manmade ionizing radiation. In this project which has continued for more than 10 years and is unique in many technical aspects in Iran and in...
متن کاملMouse Models of Aneuploidy
Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population. Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are also known as segmental aneuploidies, ...
متن کاملBuffering and proteolysis are induced by segmental monosomy in Drosophila melanogaster
Variation in the number of individual chromosomes (chromosomal aneuploidy) or chromosome segments (segmental aneuploidy) is associated with developmental abnormalities and reduced fitness in all species examined; it is the leading cause of miscarriages and mental retardation and a hallmark of cancer. However, despite their documented importance in disease, the effects of aneuploidies on the tra...
متن کامل